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Abstract. The method of multiscale analysis is constructed for discrete systems of evolution
equations for which the problem is that of the far behaviour of an input boundary datum.
Discreteslow space variablesare introduced in a general setting and the related finite differences
are constructed. The method is applied to a series of representative examples: the Toda
lattice, the nonlinear Klein–Gordon chain, the Takeno system and a discrete version of the
Benjamin–Bona–Mahoney–Peregrini equation. Among the resulting limit models we find a discrete
nonlinear Schr̈odinger equation (with reversed spacetime), a three-wave resonant interaction system
and a discrete modified Volterra model.

1. Introduction

The study of nonlinear dispersive waves, historically originating in water wave problems,
has received considerable attention as a consequence of two fundamental discoveries. The
first is the concept of complete integrability of partial differential equations discovered for
the Korteveg–de Vries equation [1] and soon extended to the nonlinear Schrödinger [2] and
sine–Gordon [3] equations (for a review see [4–6]). The second is the modulational instability
of wave trains [7] which is a mechanism for the creation of localized nonlinear solitary waves,
the solitons [8].

These two discoveries have a common origin, the reductive perturbation method (or
multiscale analysis) [9] allowing the deduction of simplified equations from a basic model
without loosing its characteristic features. The method consists essentially in an asymptotic
analysis of a perturbation series, based on the existence of different scales. More specifically,
the method generates a hierarchy of (small) scales for the space and time variations of the
envelopes of a fundamental (linear) plane wave and all the overtones. The scale is, moreover,
directly related to the (small) amplitude of the wave itself. The scaling of variables is performed
via a Taylor expansion the frequencyω(k) in powers of a small deviation of the wavenumber
k = k0 + εκ. This deviation from the linear dispersion relation is, of course, generated by the
nonlinearity.

The success of the method relies mainly on the nice property that the resulting reduced
models are simple, representative and often integrable.Simplehere means actually simpler
than the master equations and allowing for useful information.Representativemeans that
they illustrate effectively real processes. This property relies on the self-consistency of the
perturbation series which treats all overtones and avoids secularities [10, 11].Integrablemeans
that they carry an infinite set of conserved quantities, have a bi-Hamiltonian formulation, are
solvable (in some sense), etc. Finally, as emphasized in [12], there exists a general property of
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the reductive perturbation approach which allows us to understand, in a qualitative way, why
the reduced systems areoftenintegrable.

The situation is quite different in the case of nonlinear lattices (continuous time and
discrete space) for which a reductive perturbative method does not exist which would produce
reduceddiscretesystems. There are actually three different approaches to multiscale analysis
for a discrete evolution. The first is obviously to go to the continuous limit right in the
starting system, for which discreteness effects are wiped out. The second is thesemi-discrete
approach which consists in having a discrete carrier wave modulated by a continuous envelope
[13]. In the latter case some discreteness aspects are preserved, in particular, the resulting
modulational instability may depend on the carrier frequency. The third stems from the
adiabatic approximation, but the approach requires one to use therotating wave approximation
to artificially eliminate the overtones. The price to pay is that the predictions, for example the
modulational instability, are not trustworthy for large times [14].

We propose here a set of tools which allow us to perform multiscale analysis on a discrete
evolution equation when the problem is that of the propagation of a signal sent at one end of
a nonlinear lattice. These tools rely on the definition of a large grid scale via the comparison
of the magnitude of the related difference operator, and on the expansion of the wavenumber
in powers of frequency variations due to nonlinearity.

The method will be illustrated in a series of examples (Toda lattice, anharmonic
Klein–Gordon chain, Benjamin–Bona–Mahoney–Peregrini (BBMP) equation,. . .) for which
the reduced model for the slowly varying envelopeψ(n, t) results in the following evolution
(over dot stands for partial time derivative)

−iβ[ψn+1− ψn−1] + αψ̈n − γ |ψn|2ψn = 0. (1.1)

The coefficientsα, β andγ depend on the starting model equation and on the frequency
of the carrier wave. The continuous version is well known to apply to pulse propagation
in a nonlinear Kerr medium (optical fibre) [15] and has also been obtained in the context of
Rayleigh–Taylor instability and electron-beam plasma [16] and referred to there as theunstable
nonlinear Schr̈odingerequation.

Another example deals with the Takeno model of exciton–phonon coupling in diatomic
chains [17] for which we investigate the three-wave resonant interaction. The resulting discrete
system reads

Ẋ + v
1

2
[Xm+1−Xm−1] = − 2

�
a1ā2

ȧ1 + v1
1

2
[a1,m+1− a1,m−1] = 1

ν1
a2X

ȧ2 + v2
1

2
[a2,m+1− a2,m−1] = − 1

ν2
a1X̄ (1.2)

whereX is the envelope of the phonon wave (carrier frequency�, group velocityv), aj are the
envelopes of the two components of the exciton wave (carrier frequenciesνj , group velocities
vj ), for the Brillouin selection ruleν1− ν2 = �.

We also illustrate the method by investigating the low-frequency discrete limit of the Toda
lattice [18], and obtain

un+1− un−1 + unu̇n = 0 (1.3)

which can be viewed as the Volterra model [19] with space and time exchanged.
In this paper, the emphasis will be put mainly on the method and on the above-mentioned

simple examples, but not on the physical implications that one can infer from the reduced
systems. Indeed, such studies essentially depend on the physical context and thus require



Multiscale analysis of discrete nonlinear evolution equations 2847

specific attention. After a short statement of the problem in the next section, section 3 is
devoted to the definition of the main tools. Section 4 deals with the slowly varying envelope
limit of the Toda lattice and section 5 with the nonlinear Klein–Gordon (or sine–Gordon) chain.
Section 6 deals with a new nonlinear evolution constructed as a discrete version of the BBMP
equation and section 7 is devoted to the study of the three-wave resonant interaction in the
Takeno model.

2. Discrete waves

2.1. Boundary value problem

Our purpose is the study of a nonlinear dispersive chain with dispersion relation�(K). The
physical problem we are concerned with is the following: the first particle of the chain (say
n = 0) is given an oscillation (or is submitted to an external force) at frequency�. In a linear
chain this oscillation would propagate without distortion as the plane wave exp[i�t +Knd)],
whered is the lattice spacing.

However, the nonlinearity induces some deviations from the value�, namely, the wave
propagates with actual frequencyω and wavenumberk that we define as

ω = � + εν (2.1)

and by Taylor expansion

k = K + ε
1

c
ν + ε2γ ν2 (2.2)

for the following definitions (note thatc is the group velocity atK)

1

c
= ∂k

∂ω

∣∣∣∣
�

2γ = ∂2k

∂ω2

∣∣∣∣
�

. (2.3)

For notation simplicity, we shall assume here thatγ = 1, which does not reduce the generality
of our task.

A wavepacket in thelinear caseis then given by the Fourier transform

un(t) =
∫

dω û(ω) ei(ωt+knd)

whereû(ω) has support inside the allowed band frequency [ω0, ωb], which gives here

un(t) = ε ei(�t+Knd)
∫

dν û(ν) eiνε(t+nd/c) eiν2ε2nd

or else

un(t) = A(n, t)ψ(ξn, τn)
A(n, t) = ei(�t+Knd)

ψ(ξn, τn) = ε
∫

dν û(ν) ei(ντn+ν2ξnd)
(2.4)

by means of the following change ofindependent variables:

τn = ε(t + nd/c) ξn = ε2n. (2.5)

2.2. Discrete scaling

In order to keep discreteness in the space variable for the envelopeψ(ξn, τn), we fix the small
parameter as

ε2 = 1/N (2.6)
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and, for any givenn, we shall consider only the set of points{. . . , n− N, n, n +N, . . .} of a
large grid indexed by theslow variablem, that is

. . . , (n−N)→ (m− 1), n→ m, (n +N)→ (m + 1), . . . . (2.7)

To simplify the notation, we shall be using everywhere

ψ(ξj , τj ) = ψ̃j ψ(ξj , τn) = ψj (2.8)

for a givenn and allj (note thatψ̃n = ψn). Hence we are interested in expressing everything
in terms ofψm = ψ(m, τ) defined as

ψn−N = ψm−1 ψn = ψm ψn+N = ψm+1. (2.9)

The problem is now to express the various difference operators occurring in nonlinear
evolutions for the productA(n, t)ψm in terms of difference operators forψm.

2.3. Initial value problem

The traditional approach to multiscaling for continuous media originates from water wave
theory for which the physical problem is usually that of the evolution of an initial disturbance
(e.g. of the surface). In this case the observer has to follow the deformation at the (linear)
group velocity.

This operation corresponds to making, in the general Fourier transform solution, the
expansion ofω(k) around small deviations ofk from the linear dispersion law. The resulting
change of variables (in the discrete case for comparison) would then read

τn = ε2t ξn = ε(nd + ct) (2.10)

which indeed corresponds to a translation at the group velocityc that is in theco-moving frame.
In this case, the change of variable definitely breaks the discreteness of the space variable.

Hence, an initial value problem for a discrete lattice in continuous time cannot be treated within
a fully discrete multiscale analysis.

However, when the phenomenon to observe results from a boundary input datum, the
observer stands at some given point of the lattice and compares the received signal with the
input signal. This has to be done in theretarded time, which corresponds to the change of
variables (2.5), and obviously does not destroy the discrete character of the variables.

3. Difference operators

3.1. General consideration

Before going to the technical points, it is quite useful to recall elementary facts concerning the
relation between continuous derivation and discrete differences. Letφn denote a function of the
discrete variablenwhich varies slowly from one site to the other. In that case we canrepresent
this function by the functionf (x) = φn of the continuous variablex = nd. The constantd is
a small arbitrary real number which does not need to be related to the dimension of the grid
spacing (this would be necessary iff (x) would be the datum andφn its representation). By
Taylor expansion we readily obtain

d
∂f (x)

∂x
= φn+1− φn +O(d2) (3.1)

d
∂f (x)

∂x
= 1

2
[φn+1− φn−1] + O(d3) (3.2)

d2∂
2f (x)

∂x2
= φn+1− 2φn + φn−1 +O(d4). (3.3)
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Consequently, if the precision of the first derivative has to exceed at least the value of the
second derivative, it has to be defined with (3.2). This is not the only reason for considering
centred differences. The first-order wave equation

∂tφn − v 1
2[φn+1− φn−1] = 0

possesses agooddispersion relation (ω = v sink) with real-valued solution. Such would not
be the case with definition (3.1).

Going now to the stretched space variableξ = ε2x, we readily get

φn±1 = φn ± ε2d
∂f (ξ)

∂ξ
+ ε4 1

2
d2∂

2f (ξ)

∂ξ2
± ε6 1

6
d3∂

3f (ξ)

∂ξ3
+ · · ·

which, under the discretization procedure according to the rules (3.2) and (3.3), leads to the
following qualitative indicationsfor the change of variable on the first and second derivatives

φn+1− φn−1 = ε2[φm+1− φm−1] + O(ε6) (3.4)

φn+1− 2φn + φn−1 = ε4[φm+1− 2φm + φm−1] + O(ε8). (3.5)

3.2. Construction of the stretched grid

For ε2 = 1/N , the above expressions serve as a guide to the correct rules for the change of
coordinates. They can be understood simply within the definitions (2.6) and (2.7) by writing

φn+N − φn−N = (φn+N − φn+N−2) + (φn+N−2 − φn+N−4)

+ · · · + (φn−N+4− φn−N+2) + (φn−N+2− φn−N) ∼ N [φn+1− φn−1]

whereN has to be chosen odd so as to find in the above expansion the very termφn+1− φn−1.
Then the meaning of this grid change is that, on the interval [n − N, n + N ], the variations
of φn are almost equal, or else thatφn is of almost constant slope (with a precision of 1/N2).
The purpose now is to construct rigorously such simple rules, and in particular to determine
the conditions ofslow variationunder which expressions like (3.4) and (3.5) do hold.

To that end, we define the derivatives in the original variablen as (theC`k are the binomial
coefficientsk!/`!(k − `)!)

∇φn = φn+1− φn−1 ∇kφn =
k∑
`=0

(−)`C`kφn+k−2` (3.6)

and the derivatives in the new variablem defined in (2.7) as

1Nφn = φn+N − φn−N 1k
Nφn =

k∑
`=0

(−)`C`kφn+N(k−2`). (3.7)

By expressing the value of a functionφn at any other pointn+N in terms of the differences
∇kφn up tok = N , we prove [20] in the appendix that for any oddN = 2q + 1

1Nφn =
q∑
`=0

α`q∇2`+1φn α`q =
(2q + 1)(q + `)!

(q − `)!(2` + 1)!
(3.8)

12
Nφn =

2q+1∑
`=1

γ `q∇2`φn γ `q =
2(2q + 1)(2q + `)!

(2q + 1− `)!(2`)! . (3.9)

The above expressions areidentitieswhich replace the analogue continuous change of variable
∂xφ = ε2∂ξφ. Note that the first coefficients areα0

q = N andγ 1
q = N2. In general thepth

order1N difference will have the first termNp∇pφn.
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3.3. Slow variables

We now make the hypothesis ofslow variationof the functionφn as

|∇k+1φn| = ε2|∇kφn| +O(ε4) (3.10)

for some norm. Such a hypothesis is never explicit in the continuous case where it is usually
admitted implicitlythat, if ∂xφ = ε2∂ξφ, then|∂2

xφ| ∼ ε2|∂xφ|. However, in fact it goes the
other way round: first one must assume that the functionφ(x) is of slow variation inx, i.e.∣∣∣∣∂k+1φ

∂x

∣∣∣∣ ∼ ε2

∣∣∣∣∂kφ∂x
∣∣∣∣

and second it is this very measureε2 of thevelocity of variationof φ(x) that allows us to make
the change of variableξ = ε2x.

It is necessary now to check that the hypothesis of slow variation is compatible with the
expression (3.8) and (3.9) as soon asN is chosen equal (nearest odd integer) toε−2. By a
recursive use of (3.10) we obtain the following majorations at largeN = 2q + 1:

1

N
|1Nφn| < |∇φn|

q∑
`=0

α`q

(2q + 1)2`+1

1

N2
|12

Nφn| < |∇2φn|
2q+1∑
`=1

γ `q

(2q + 1)2`
.

We compute the sums of the above series asN = 2q + 1→∞:

lim
q→∞

q∑
`=0

α`q

(2q + 1)2`+1
=
∞∑
`=0

1

22`(2` + 1)!
= 2 sinh

(
1

2

)
= 1.042 (3.11)

lim
q→∞

2q+1∑
`=1

γ `q

(2q + 1)2`
=
∞∑
`=1

2

(2`)!
= 2 cosh(1)− 2= 1.086. (3.12)

Hence the slow variation assumptions are compatible with the series (3.8) and (3.9). The
convergence is actually quite fast as, for example in the order one difference, the first correction
coefficient is 1/24 to be compared to 2 sinh(1/2)− 1 (they differ by 0.5× 10−3).

Now, with the assumption (3.10), the identities (3.8) and (3.9) together with 1/N = ε2,
N = 2q + 1, lead to

∇φn = 1

N
1Nφn +O(1/N3) ∇2φn = 1

N2
12
Nφn +O(1/N4) (3.13)

which are the general rules for the change of variablen→ m in the first and second differences.
These rules do concur with (3.4) and (3.5).

3.4. General expressions

Remembering the notation (2.8), by Taylor expansion in the continuous variableτn, we have

ψ̃n+1 = ψn+1 + ε
d

c
∂τψn+1 +

1

2

(
ε
d

c

)2

∂2
τ ψn+1 +

1

6

(
ε
d

c

)3

∂3
τ ψn+1

ψ̃n−1 = ψn−1− ε d
c
∂τψn−1 +

1

2

(
ε
d

c

)2

∂2
τ ψn−1− 1

6

(
ε
d

c

)3

∂3
τ ψn−1.

Then we use the identities (such general expressions are given in the appendix)

ψn+1− ψn = 1
2[ψn+1− ψn−1] + 1

2[ψn+1− 2ψn +ψn−1]

ψn − ψn−1 = 1
2[ψn+1− ψn−1] − 1

2[ψn+1− 2ψn +ψn−1]
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to replace hereaboveψn+1 andψn−1 in terms ofψn. Finally, by means of (3.13) we arrive at
the following general expressions which constitute the basic tool which allows computation
of the first and second derivatives:

ψ̃n+1 = ψm + ε
d

c
∂τψm +

1

2
ε2

(
d

c

)2

∂2
τ ψm +

1

N

1

2
[ψm+1− ψm−1]

+
ε

N

d

c

1

2
∂τ [ψm+1− ψm−1] +

1

6
ε3

(
d

c

)3

∂3
τ ψm +

1

2N2
[ψm+1− 2ψm +ψm−1]

+
ε2

4N

(
d

c

)2

∂2
τ [ψm+1− ψm−1] +

ε4

24

(
d

c

)4

∂4
τ ψm +O(ε5) (3.14)

ψ̃n−1 = ψm − ε d
c
∂τψm +

1

2
ε2

(
d

c

)2

∂2
τ ψm −

1

N

1

2
[ψm+1− ψm−1]

+
ε

N

d

c

1

2
∂τ [ψm+1− ψm−1] − 1

6
ε3

(
d

c

)3

∂3
τ ψm +

1

2N2
[ψm+1− 2ψm +ψm−1]

− ε
2

4N

(
d

c

)2

∂2
τ [ψm+1− ψm−1] +

ε4

24

(
d

c

)4

∂4
τ ψm +O(ε5). (3.15)

Note that pushing the general formula (3.13) to higher orders, we can reach any order of
precision in such expansions.

3.5. Discrete derivative of a function

By straightforward calculations, using the above basic formulae (3.14) and (3.15), the first
derivative follows

ψ̃n+1− ψ̃n−1 = 2ε
d

c
∂τψm +

1

N
[ψm+1− ψm−1] + O(ε3) (3.16)

together with the second derivative

ψ̃n+1− 2ψ̃n + ψ̃n−1 = ε2

(
d

c

)2

∂2
τ ψm +

ε

N

d

c
∂τ [ψm+1− ψm−1]

+
1

N2
[ψm+1− 2ψm +ψm−1] +

ε4

12

(
d

c

)4

∂4
τ ψm +O(ε5). (3.17)

It is worth remarking that, by continuation of the above formulae stopped atε3 for the first
derivative and at orderε4 for the second, we obtain

∂

∂x
= ε2 ∂

∂ξ
+
ε

c

∂

∂τ
+ θ(ε3)

∂2

∂x2
= 2

ε3

c

∂

∂τ

∂

∂ξ
+
ε2

c2

∂2

∂τ 2
+ θ(ε4)

which are the very relations corresponding to the change of variables

τ = ε(t + x/c) ξ = ε2x

the continuous analogue of (2.5).

3.6. Discrete derivative of a product

We now have to obtain the analogous relations for the product

un(t) = A(n, t)ψ(ξn, τn) = Anψ̃n
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appearing in definition (2.4). The quantityun+1− un−1 is factorized as

An+1ψ̃n+1− An−1ψ̃n−1 = 1
2[An+1− An−1][ ψ̃n+1 + ψ̃n−1] + 1

2[An+1 +An−1][ ψ̃n+1− ψ̃n−1]

and using the basic formula (3.14) and (3.15), it follows at orderε/N or ε3

un+1− un−1 = [An+1− An−1]ψm + ε
d

c
[An+1 +An−1]∂τψm +

1

N

1

2
[An+1 +An−1]

×[ψm+1− ψm−1] + ε2

(
d

c

)2 1

2
[An+1− An−1]∂2

τ ψm. (3.18)

The second derivative is factorized as follows

un+1− 2un + un−1 = 1
2[An+1− An−1][ ψ̃n+1− ψ̃n−1]

+1
2[An+1 +An−1][ ψ̃n+1− 2ψ̃n + ψ̃n−1] + ψ̃n[An+1− 2An +An−1]

which readily gives from (3.14) and (3.15)

un+1− 2un + un−1 = [An+1− 2An +An−1]ψm + ε[An+1− An−1]
d

c
∂τψm

+ε2 1

2
[An+1 +An−1]

(
d

c

)2

∂2
τ ψm +

1

N

1

2
[An+1− An−1][ψm+1− ψm−1] (3.19)

at orderε/N or ε3. The formulae (3.18) and (3.19) constitute our basic tool for deriving
reduced models in the following sections.

4. The Toda lattice

The Toda chain is defined by the equation [18]

ẍn = exn+1−xn − exn−xn−1 (4.1)

which can also be written

∂B(n, t)

∂t
= [1 +B(n, t)](V (n, t)− V (n− 1, t)) (4.2)

∂V (n, t)

∂t
= B(n + 1, t)− B(n, t) (4.3)

for the following definitions

1 +B(n, t) = exn−xn−1 V (n, t) = ẋn. (4.4)

The dispersion relation for the linearized version of the above equation

�2 = 4 sin2 Kd

2
(4.5)

is precisely that of the chain of coupled masses.
Following section 2 we expandω = � + εν and consider here the two cases� = 0 and

� 6= 0. The case� = 0 can be viewed as the low-frequency limit of the Toda chain, which
is actually the standard long wave limit. The case� 6= 0 corresponds to the slowly varying
envelope approximation of solutions of the Toda lattice.
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4.1. Slowly varying envelope approximation

We first seek a solution of equations (4.2) and (4.3) in the form of a Fourier expansion in
harmonics of the fundamentalA(n, t) = exp i(�t +Knd) where the Fourier components are
developed in a Taylor series in powers of the small parameterε measuring the amplitude of
the initial wave

B(n, t) =
l=p∑
l=−p

p=∞∑
p=1

εpψ(l)
p (ξn, τn)A

l(n, t) (4.6)

V (n, t) =
l=p∑
l=−p

p=∞∑
p=1

εpφ(l)p (ξn, τn)A
l(n, t). (4.7)

Note that the above series includes all overtonesAl(n, t) = exp il(�t +Knd) up to orderp.
These are generated by the nonlinear terms which explains that the corresponding coefficients
are of maximum orderεp. Here we have the real-valuedness conditions

ψ(−l)
p = (ψ(l)

p )
∗ φ(−l)p = (φ(l)p )∗ (4.8)

the asterisk denoting complex conjugations. The slow variablesτn andξn are introduced via

τn = ε
(
t +

nd

c

)
ξn = ε2n (4.9)

where the velocityc will be determined later as a solvability condition of equations (4.2) and
(4.3).

By substitution of (4.6) and (4.7) into (4.2) and (4.3) and using (3.18) (together with
∂t = ε∂τ ) at order two inε we obtain

l=p∑
l=−p

p=∞∑
p=1

εp
{
ε
∂

∂τ
ψ(l)
p (m, τ) + i�lψ(l)

p (m, τ)

}
Al(n, t) (4.10)

=
{

1 +
l=p∑
l=−p

p=∞∑
p=1

εpψ(l)
p (m, τ)A

l(n, t)

}

×
{ l=p∑
l=−p

p=∞∑
p=1

εp
[
φ(l)p (m, τ)(A

l(n, t)− Al(n− 1, t)

+ε

(
d

c

)
∂φ(l)p (m, τ)

∂τ
Al(n− 1, t)− 1

2
ε2

(
d

c

)2∂2φ(l)p (m, τ)

∂τ 2
Al(n− 1, t)

+ε2(φ(l)p (m + 1, τ )− φ(l)p (m− 1, τ ))
1

2
Al(n− 1, t) + · · ·

]}
(4.11)

l=p∑
l=−p

p=∞∑
p=1

εp
{
ε
∂

∂τ
φ(l)p (m, τ) + i�lφ(l)p (m, τ)

}
Al(n, t)

=
l=p∑
l=−p

εp
{
ψ(l)
p (m, τ)(A

l(n + 1, t)− Al(n, t))

+ε

(
d

c

)
∂ψ(l)

p (m, τ)

∂τ
Al(n + 1, t) +

1

2
ε2

(
d

c

)2 ∂2ψ(l)
p (m, τ)

∂τ 2
Al(n + 1, t)

+ε2(ψ(l)
p (m + 1, τ )− ψ(l)

p (m− 1, τ ))
1

2
Al(n + 1, t) + · · ·

}
. (4.12)
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We can now proceed to collect and solve different orders ofεp and harmonicsl, order
(p, l), in (4.10) and (4.12). Note that it is enough to considerl > 0 as negative values follow
from the reality condition (4.8). In the leading order (1, l) we have
l=1∑
l=−1

i�lψ(l)
1 (m, τ)A

l(n, t)−
l=1∑
l=−1

φ
(l)
1 (m, τ)(A

l(n, t)− Al(n− 1, t)) = 0 (4.13)

l=1∑
l=−1

i�lφ(l)1 (m, τ)A
l(n, t)−

l=1∑
l=−1

ψ
(l)
1 (m, τ)(A

l(n + 1, t)− Al(n, t)) = 0. (4.14)

This is a linear homogeneous system forψ
(l)
1 (m, τ) andφ(l)1 (m, τ) polynomials inA. Hence,

each coefficient has to vanish separately. Forl = 0 the system gives trivial equations. For
l = 1 the determinant of the system forψ(1)1 (m, τ) andφ(1)1 (m, τ) is zero if�(K) verifies the
dispersion relation

�(K) = 2 sin
Kd

2
. (4.15)

Under this condition we seek the general non-trivial solution of equations (4.13) and (4.14)

ψ
(1)
1 (m, τ) = aη(m, τ) φ

(1)
1 (m, τ) = η(m, τ) (4.16)

with a given by

a = exp

(−iKd

2

)
. (4.17)

At order (2, l) we have the system
l=2∑
l=−2

{i�lψ(l)
2 (m, τ)− φ(l)2 (m, τ)(1− a2l)}Al(n, t)

+
l=1∑
l=−1

{
∂ψ

(l)
1 (m, τ)

∂τ
−
(
d

c

)
∂φ

(l)
1 (m, τ)

∂τ
a2l

}
Al(n, t)

−
{ l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t)×
l=1∑
l=−1

φ
(l)
1 (m, τ)(1− a2l)Al(n, t)

}
= 0 (4.18)

l=2∑
l=−2

{i�lφ(l)2 (m, τ)− ψ(l)
2 (m, τ)(a

−2l − 1)}Al(n, t)

+
l=1∑
l=−1

{
∂φ

(l)
1 (m, τ)

∂τ
−
(
d

c

)
∂ψ

(l)
1 (m, τ)

∂τ
a−2l

}
Al(n, t) = 0. (4.19)

For l = 0 we obtain a homogeneous system with non-zero determinant, consequently only the
trivial solution exists, so that

ψ
(0)
1 (m, τ) = 0 φ

(0)
1 (m, τ) = 0. (4.20)

For l = 1 we have an inhomogeneous linear system forψ
(1)
2 (m, τ) and φ(1)2 (m, τ).

The determinant of the associated homogeneous system is zero owing to the dispersion
relation (4.15). Therefore, the system will have a solution if the Fredholm solvability condition
is satisfied, that is if

c = ∂�(K)

∂K
= d cos

Kd

2
(4.21)

which determinesc as the group velocity.
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Under this solvability condition we get

ψ
(1)
2 (m, τ) = aδ(m, τ) +

a

i�

(
a
d

c
− 1

)
∂η(m, τ)

∂τ
(4.22)

φ
(1)
2 (m, τ) = δ(m, τ) (4.23)

whereδ(m, τ) is an arbitrary function. Furthermore, forl = 2 we obtainψ(2)
2 (m, τ) and

φ
(2)
2 (m, τ)

ψ
(2)
2 (m, τ) = (a�)2

2(�2 − sin2Kd)
η2(m, τ) (4.24)

φ
(2)
2 (m, τ) = � sin(Kd)

2(�2 − sin2Kd)
η2(m, τ). (4.25)

The next order (3, l) gives the system

l=3∑
l=−3

{i�lψ(l)
3 (m, τ)− φ(l)3 (m, τ)(1− a2l)}Al(n, t)

+
l=2∑
l=−2

{
∂ψ

(l)
2 (m, τ)

∂τ
−
(
d

c

)
∂φ

(l)
2 (m, τ)

∂τ
a2l +

(
1

2

)(
d

c

)2
∂2φ

(l)
1 (m, τ)

∂τ 2
a2l

−[φ(l)1 (m + 1, τ )− φ(l)1 (m− 1, τ )]
a2l

2

}
Al(n, t)

−
l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t)×
l=2∑
l=−2

φ
(l)
2 (m, τ)(1− a2l)Al(n, t)

−
l=2∑
l=−2

ψ
(l)
2 (m, τ)A

l(n, t)×
l=1∑
l=−1

φ
(l)
1 (m, τ)(1− a2l)Al(n, t)

−
l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t)×
l=1∑
l=−1

(
d

c

)
∂φ

(l)
1 (m, τ)

∂τ
a2lAl(n, t) = 0 (4.26)

l=3∑
l=−3

{i�lφ(l)3 (m, τ)− ψ(l)
3 (m, τ)(a

−2l − 1)}Al(n, t)

+
l=2∑
l=−2

{
∂φ

(l)
2 (m, τ)

∂τ
−
(
d

c

)
∂ψ

(l)
2 (m, τ)

∂τ
a−2l

}
Al(n, t)

−
l=1∑
l=−1

(
1

2

)(
d

c

)2
∂2ψ

(l)
1 (m, τ)

∂τ 2
a2lAl(n, t)

−
l=1∑
l=−1

[ψ(l)
1 (m + 1, τ )− ψ(l)

1 (m− 1, τ )]
a2l

2
Al(n, t) = 0. (4.27)

The order(3, 0) allows us to determineψ(0)
2 (m, τ) andφ(0)2 (m, τ) via an inhomogeneous

system of equations. They read

ψ
(0)
2 (m, τ) = c2

c2 − d2
|η(m, τ)|2 (4.28)

φ
(0)
2 (m, τ) = cd

c2 − d2
|η(m, τ)|2. (4.29)
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The next order(3, 1) is a tedious one which results in the nonlinear evolution forη(m, τ).
It is an inhomogeneous linear system of equations forψ

(1)
3 (m, τ) andφ(1)3 (m, τ) of determinant

zero. Therefore, we will have a solution if the Fredholm solvability condition is satisfied. This
condition gives a nonlinear evolution ofη(m, τ) in which the term inδ(m, τ) coming from
ψ
(1)
2 (m, τ) andφ(1)2 (m, τ) is self-eliminated. The equation forη(m, τ) = ηm finally reads

−iβ[ηm+1− ηm−1] + α
∂2ηm

∂τ 2
− 2|ηm|2ηm = 0 (4.30)

with

α = tan2 Kd

2
β = sinKd. (4.31)

4.2. Low-frequency limit

We are interested now in the propagation of alow-frequency waveand we define the following
quantities

ω = εν ∂ω

∂k

∣∣∣∣
k=0

= vg ≡ d (4.32)

and then we develop the functionk(ω) in a Taylor series inε. We obtain

k = 1

d
εν + γ ε3ν3 γ = 1

6

∂3k

∂ω3

∣∣∣∣
k=0

. (4.33)

From the above expansion, the new variables follow,

τn = ε(t + n) ξn = ε3n (4.34)

and consequently we shall consider thenew gridwith the definition

ε3 = 1

N
ξn→ m ξn+N → m + 1. (4.35)

The method and formulae developed before apply identically except that now we have
1/N = ε3 instead ofε2. In particular, the only formula we need to use is that of the second
derivative (3.17).

Now we set

Bn(t) = ε2b(ξn, τn) (4.36)

and compute the limit expression of the Toda equation (4.4). We obtain

ε4∂τ

(
∂τ b(m)

1 + ε2b(m)

)
= ε4∂ττ b(m) + ε6∂τ [b(m + 1)− b(m− 1)] + O(ε8)

which finally reduces to

b(m + 1)− b(m− 1) + b(m)∂τ b(m) = 0. (4.37)

This equation is a Volterra-like equation where one would have exchanged space and time, as
expected.
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5. Nonlinear Klein–Gordon chains

The modulation of the solutions of the Toda chain has been shown to obey the nonlinear
Schr̈odinger (NLS)-like equation (1.1) with particular values of the coefficients. It is of interest
to compare this situation resulting from anintegrable modelto the one resulting from anon-
integrablestarting equation. Such is the case for the nonlinear Klein–Gordon chain

ün − ω2
1(un+1− 2un + un−1) + ω2

0un + 0u3
n = 0 (5.1)

or the sine–Gordon chain

ün − ω2
1(un+1− 2un + un−1) + ω2

0 sinun = 0. (5.2)

Both cases, in the perturbation scheme, are equivalent for0 = −ω2
0/6, and their dispersion

relation is

�2 = ω2
0 + 4ω2

1 sin2

(
Kd

2

)
. (5.3)

5.1. Evolution of the envelope

We start with the evolution (5.1), and seek the evolution ofψm = ψ1
1 with the tools developed

in section 3 when

u(n, t) =
∞∑
p=1

εp
`=p∑
`=−p

ei`θ(n,t)ψ`
p(m, τ) (5.4)

with conditions onψ`
p which ensure reality ofun:

ψ`
p = ψ̄(−`)

p ψ(0)
p ∈ R. (5.5)

Hereθ(n, t) = �t +Knd, the slow variables are those defined in section 3 (or those used for
the Toda chain, namely (4.9)), and we stop everything at orderε3 = ε/N .

The coefficients of the constant term give at orderε

ω2
0ψ

0
1 ⇒ ψ0

1 = 0

at orderε2

ω2
0ψ

0
2 ⇒ ψ0

1 = 0

and at orderε3

(ψ0
1)ττ − ω2

1

(
d

c

)2

(ψ0
1)ττ + 0[(ψ0

1)
3 + 6|ψ1

1 |2ψ0
1 ] + ω2

0ψ
0
3 ⇒ ψ0

3 = 0.

The coefficients of eiθ at orderε give

ψ1
1 [−�2 − ω2

1(e
iKd − 2 + e−iKd) + ω2

0] = 0

which agrees with the dispersion relation (5.3). Then at orderε2 we obtain

ψ1
2 [−�2 − ω2

1(e
iKd − 2 + e−iKd) + ω2

0] + (ψ1
1)τ

[
2i�− ω2

1
d

c
(eiKd − e−iKd)

]
= 0.

The first term in square brackets hereabove vanishes due to the dispersion relation while the
second one vanishes too thanks to

� = ω2
1
d

c
sinKd (5.6)
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which is indeed verified as, by definition (2.3),

c = ∂�

∂K
= 1

�
ω2

1d sinKd. (5.7)

Finally, the orderε3 leads to

ψ1
3 [−�2 − ω2

1(e
iKd − 2 + e−iKd) + ω2

0] + (ψ1
2)τ

[
2i�− ω2

1
d

c
(eiKd − e−iKd)

]
+(ψ1

1)ττ

[
1− ω2

1
1

2

(
d

c

)2

(eiKd + e−iKd)

]
−ω2

1
1

2
(eiKd − e−iKd)[ψ1

1(m + 1)− ψ1
1(m− 1)] + 30|ψ1

1 |2ψ1
1 .

The first two terms in square brackets hereabove vanish identically and we are left with the
equation forψ = ψ1

1 ,

−iβ[ψm+1− ψm−1] + αψττ (m) + 30|ψm|2ψm = 0 (5.8)

with the definitions

β = ω2
1 sinKd α = 1− ω2

1

(
d

c

)2

cosKd. (5.9)

The main difference between the parameter values hereabove and those for the (integrable)
Toda chain (4.31) is that hereα changes sign for some value ofK, which is of fundamental
importance for the stability properties of the modulation. However, this problem goes beyond
the scope of this paper and will be considered elsewhere.

5.2. Continuous limit

In order to check the consistency of our method, it is instructive to examine the continuous
limit of the nonlinear Klein–Gordon chain to verify that its (continuous) multiscale analysis
gives rise to an equation which is precisely the continuous version of (5.8).

Defining the continuous variablex = nd and the velocityv = ω1d, the continuous limit
of (5.1) reads

utt − v2uxx + ω2
0u + 0u3 = 0. (5.10)

By seeking a solution as a Fourier integral and expandingk in powers ofε for ω = � + εν
aroundK, we are led as previously to the expansion

u(x, t) =
∞∑
p=1

εp
`=p∑
`=−p

ei`θ(x,t)ψ`
p(ξ, τ ) θ = �t +Kx (5.11)

and the change of variables (c is the group velocity at frequency�)

ξ = ε2x τ = ε
(
t +

x

c

)
(5.12)

with the reality conditionsψ`
p = ψ̄(−`)

p .
Inserting everything in the evolution equation (5.10), we obtain as the coefficients of eiθ

0= ε[−�2 + v2K2 + ω2
0] + ε2

[
2i�ψτ − 2iK

v2

c
ψτ

]
+ε3

[
ψττ − 2iKv2ψξ − v

2

c2
ψττ + 30A|ψ |2ψ

]
+O(ε4).
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The orderε cancels as soon as we select thelinear dispersion relation

�2 = ω2
0 + v2K2. (5.13)

The orderε2 thenidentically vanishesas indeed, from the definition of the group velocity, we
readily get

c = v2K

�
⇒ i�− v

2

c
iK = 0. (5.14)

Finally, the orderε3 furnishes

−2iKv2ψξ +

[
1− v

2

c2

]
ψττ + 30|ψ |2ψ = 0. (5.15)

One interesting consequence here is that the coefficient of the second derivative hereabove is
from (5.14)

1− v
2

c2
= 1− 1

v2

�2

K2
= − ω2

0

v2K2
< 0 (5.16)

which never changes sign, in contrast to the discrete case.
With continuous equation (5.10) being the continuous limit of the discrete Klein–Gordon

equation (5.1), the consistency check consists now in the verification that the continuous limit
of our equation (5.8) is precisely the above NLS equation (5.15). This readily follows from
the limits asKd → 0:

1
2[ψm+1− ψm−1] → dψξ

ω1d → v

β = ω2
1 sinKd → v2K

d

α = 1− (ω1d)
2

c2
cosKd → 1− v

2

c2
.

6. Discrete Benjamin–Bona–Mahoney–Peregrini equation

6.1. Construction of the model

From the quite well known Boussinesq equations [21], further asymptotic limits and restriction
to unidirectional propagation are possible, leading to reduced models among which we find
the Korteweg–de Vries (KdV) equation and the following BBMP equation for the fieldu(x, t):

ut + ux − uxxt + uux = 0. (6.1)

The discrete multiscale tool, unlike in the continuous case, furnishes expressions for the
differences as infinite power series in the small parameter. It is always more convenient to stick
with the first few orders in the expansion, as in the basic expression (3.16). Consequently, we
need to get rid of the third-order derivative in the above evolution by writing instead (6.1) as
a system of equations foru(x, t) and two auxilair fieldsp(x, t) andv(x, t)

ux = p pt = v vx − ut = p(1 +u). (6.2)

The discretization of a continuous model is always non-unique. For instance, the discrete
analogues of the KdV equation are the Toda lattice or the Langmuir equation, both leading
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to the KdV equation in the continuum limit. Among different possible choices, we introduce
here the following discrete analogue of (6.2):

1
2[u(n + 1, t)− u(n− 1, t)] = p(n, t)

∂p(n, t)

∂t
= v(n, t)

1

2
[v(n + 1, t)− v(n− 1, t)] − ∂u(n, t)

∂t
= p(n, t)[1 + u(n, t)].

(6.3)

6.2. Multiscale analysis

As in the Toda case we seek a solution of equations (6.3) in the form of a Fourier expansion
in harmonics of the fundamentalA(n, t) = exp i(�(K)t + Knd) and where the Fourier
components are developed in a Taylor series in powers of the small parameterε:

u(n, t) =
l=p∑
l=−p

p=∞∑
p=1

εpη(l)p (ξn, τn)A
l(n, t) (6.4)

p(n, t) =
l=p∑
l=−p

p=∞∑
p=1

εpψ(l)
p (ξn, τn)A

l(n, t) (6.5)

v(n, t) =
l=p∑
l=−p

p=∞∑
p=1

εpφ(l)p (ξn, τn)A
l(n, t). (6.6)

The slow variablesτn andξn are introduced via

τn = ε
(
t +

nd

c

)
ξn = ε2n (6.7)

where the velocityc will be determined later as a solvability condition.
Using the identities

Al(n + 1, t) +Al(n− 1, t) = 2 cos(lKd)Al(n, t) (6.8)

Al(n + 1, t)− Al(n− 1, t) = 2 sin(lKd)Al(n, t) (6.9)

the discrete derivatives in (6.3) can be written, with the help of the derivative of a product
(3.18), as

1

2
(u(n + 1, t)− u(n− 1, t)) =

l=p∑
l=−p

p=∞∑
p=1

εp
{
η(l)p (m, τ) i sin(Kld) + ε

(
d

c

)
∂η(l)p

∂τ
cos(Kld)

+
ε2

2
[η(l)p (m + 1, τ )− η(l)p (m− 1, τ )] cos(Kld)

+
ε2

2

(
d

c

)2∂2η(l)p

∂τ 2
i sin(Kld)

}
Al(n, t) (6.10)

1

2
(v(n + 1, t)− v(n− 1, t)) =

l=p∑
l=−p

p=∞∑
p=1

εp
{
φ(l)p (m, τ) i sin(Kld) + ε

(
d

c

)
∂φ(l)p

∂τ
cos(Kld)

+
ε2

2
[φ(l)p (m + 1, τ )− φ(l)p (m− 1, τ )] cos(Kld)

+
ε2

2

(
d

c

)2∂2φ(l)p

∂τ 2
i sin(Kld)

}
Al(n, t). (6.11)
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Substituting (6.10) and (6.11) in (6.3), we obtain

l=p∑
l=−p

p=∞∑
p=1

εp
{
η(l)p (m, τ) i sin(Kld) + ε

(
d

c

)
∂η(l)p

∂τ
cos(Kld)

+
ε2

2
[η(l)p (m + 1, τ )− η(l)p (m− 1, τ )] cos(Kld)

+
ε2

2

(
d

c

)2∂2η(l)p

∂τ 2
i sin(Kld)

}
Al(n, t)

−
l=p∑
l=−p

p=∞∑
p=1

εpψ(l)
p (m, τ)A

l(n, t) = 0 (6.12)

l=p∑
l=−p

p=∞∑
p=1

εp
{
ε
∂ψ(l)

p (m, τ)

∂τ
+ i�lψ(l)

p (m, τ)

}
Al(n, t)−

l=p∑
l=−p

p=∞∑
p=1

εpφ(l)p (m, τ)A
l(n, t) = 0

(6.13)
l=p∑
l=−p

p=∞∑
p=1

εp
{
φ(l)p (m, τ) i sin(Kld) + ε

(
d

c

)
∂φ(l)p

∂τ
cos(Kld)

+
ε2

2
[φ(l)p (m + 1, τ )− φ(l)p (m− 1, τ )] cos(Kld)

+
ε2

2

(
d

c

)2∂2φ(l)p

∂τ 2
i sin(Kld)

}
Al(n, t)

−
l=p∑
l=−p

p=∞∑
p=1

εp
{
ε
∂η(l)p (m, τ)

∂τ
+ i�lη(l)p (m, τ)

}
Al(n, t)

−
[
1 +

l=p∑
l=−p

p=∞∑
p=1

εpη(l)p (m, τ)A
l(n, t)

][ l=p∑
l=−p

p=∞∑
p=1

εpψ(l)
p (m, τ)A

l(n, t)

]
= 0.

(6.14)

We proceed now to collect and solve different orders ofεp and harmonicsl (order (p, l))
in (6.12)–(6.14). In the leading order (1, l) we have

l=1∑
l=−1

η
(l)
1 (m, τ) i sin(Kld)Al(n, t)−

l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t) = 0 (6.15)

l=1∑
l=−1

i�lψ(l)
1 (m, τ)A

l(n, t)−
l=1∑
l=−1

φ
(l)
1 (m, τ)A

l(n, t) = 0 (6.16)

l=1∑
l=−1

φ
(l)
1 (m, τ) i sin(Kld)Al(n, t)−

l=1∑
l=−1

i�lη(l)1 (m, τ)A
l(n, t)−

l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t)

= 0. (6.17)

Equations (6.15), (6.16) and (6.17) constitute a linear homogeneous system forη
(l)
1 , ψ(l)

1 and
φ
(l)
1 . For l = 0, equations (6.15) and (6.16) give

ψ
(0)
1 (m, τ) = 0 (6.18)

φ
(0)
1 (m, τ) = 0 (6.19)
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and (6.17) is satisfied. Forl = 1 the determinant of the system forη(1)1 , ψ(1)
1 andφ(1)1 is zero

if �(K) verifies the dispersion relation

�(K) = − sinKd

1 + sin2Kd
. (6.20)

Under this condition we arrive at the following non-trivial solution of equations (6.15)–(6.17):

η
(1)
1 (m, τ) = η(m, τ) (6.21)

ψ
(1)
1 (m, τ) = i sin(Kd)η(m, τ) (6.22)

φ
(1)
1 (m, τ) = sin2Kd

1 + sin2Kd
η(m, τ) (6.23)

whereη is now the unknown function.
At order (2, l) we have the system

l=2∑
l=−2

η
(l)
2 (m, τ) i sin(Kld)Al(n, t) +

l=1∑
l=−1

(
d

c

)
∂η

(l)
1 (m, τ)

∂τ
cos(Kld)Al(n, t)

−
l=2∑
l=−2

ψ
(l)
2 (m, τ)A

l(n, t) = 0 (6.24)

l=1∑
l=−1

∂ψ
(l)
1 (m, τ)

∂τ
Al(n, t) +

l=2∑
l=−2

i�lψ(l)
2 (m, τ)A

l(n, t)−
l=2∑
l=−2

φ
(l)
2 (m, τ)A

l(n, t) = 0 (6.25)

l=2∑
l=−2

φ
(l)
2 (m, τ) i sin(Kld)Al(n, t) +

l=1∑
l=−1

(
d

c

)
∂φ

(l)
1

∂τ
cos(Kld)Al(n, t)

−
l=1∑
l=−1

∂η
(l)
1 (m, τ)

∂τ
Al(n, t)−

l=2∑
l=−2

i�lη(l)2 (m, τ)A
l(n, t)

−
l=2∑
l=−2

ψ
(l)
2 (m, τ)A

l(n, t)−
l=1∑
l=−1

η
(l)
1 (m, τ)A

l(n, t)

×
l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t) = 0. (6.26)

For l = 0, equation (6.25) gives using (6.18)

φ
(0)
2 (m, τ) = 0. (6.27)

Under (6.21) and (6.22), equations (6.24) and (6.26) constitute a homogeneous system
for ψ(2)

0 and theτ derivative ofη(0)1 . The determinant is non-zero and consequently only the
trivial solution exists, so that

ψ
(0)
2 (m, τ) = 0 (6.28)

η
(0)
1 (m, τ) = 0. (6.29)

For l = 1 we have, using (6.25), an inhomogeneous linear system forη
(1)
2 and ψ(1)

2 .
The determinant of the associated homogeneous system is zero owing to the dispersion
relation (6.20). Therefore, the system will have a solution for the Fredholm solvability
condition, which is satisfied for

c = −d cos3(Kd)

(1 + sin2(Kd))2
= ∂�

∂K
(6.30)

which determinesc as the group velocity.
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It is important to remark here that, for the Taylor expansion (2.2), we must assume a
non-vanishing group velocityc as indeed the first term in the expansion ofk(ω) is ε/c. Hence,
we must avoid here the vicinity of the valueKd = ±π/2 for whichc vanishes. In that vicinity,
one should reconsider the problem completely.

Then for all non-vanishing values ofc we get

η
(1)
2 (m, τ) = g(m, τ) (6.31)

ψ
(1)
2 (m, τ) = ig(m, τ) sin(Kd) +

(
d

c

)
∂η(m, τ)

∂τ
cos(Kd) (6.32)

φ
(1)
2 (m, τ) = −�g(m, τ) sin(Kd) + i

∂η(m, τ)

∂τ

(
sin(Kd)− tan2(Kd)

�

)
(6.33)

whereg(m, τ) is an arbitrary function. Furthermore, forl = 2 we obtainη(2)2 , ψ(2)
2 andφ(2)2

as follows:

η
(2)
2 (m, τ) = a(Kd)η2(m, τ) (6.34)

ψ
(2)
2 (m, τ) = i sin(2Kd)a(Kd)η2(m, τ) (6.35)

φ
(2)
2 (m, τ) = −2� sin(2Kd)a(Kd)η2(m, τ) (6.36)

wherea(Kd) is defined as

a(Kd) = − sin(Kd)

2�[1 + sin2(2Kd)] + sin(2Kd)
. (6.37)

The next order (3, l) gives the system

l=3∑
l=−3

η
(l)
3 (m, τ) i sin(Kld)Al(n, t) +

l=2∑
l=−2

(
d

c

)
∂η

(l)
2

∂τ
cos(Kld)Al(n, t)

+
l=1∑
l=−1

1

2
[η(l)1 (m + 1, τ )− η(l)1 (m− 1, τ )] cos(Kld)Al(n, t)

+
l=1∑
l=−1

1

2

(
d

c

)2
∂2η

(l)
1

∂τ 2
i sin(Kld)Al(n, t)−

l=3∑
l=−3

ψ
(l)
3 (m, τ)A

l(n, t) = 0 (6.38)

l=2∑
l=−2

∂ψ
(l)
2 (m, τ)

∂τ
Al(n, t) +

l=3∑
l=−3

i�lψ(l)
3 (m, τ)A

l(n, t)

−
l=3∑
l=−3

φ
(l)
3 (m, τ)A

l(n, t) = 0 (6.39)

l=3∑
l=−3

φ
(l)
3 (m, τ) i sin(Kld)Al(n, t) +

l=2∑
l=−2

(
d

c

)
∂φ

(l)
2 (m, τ)

∂τ
cos(Kld)Al(n, t)

+
l=1∑
l=−1

1

2
[φ(l)1 (m + 1, τ )− φ(l)1 (m− 1, τ )] cos(Kld)Al(n, t)

+
l=1∑
l=−1

1

2

(
d

c

)2
∂2φ

(l)
1 (m, τ)

∂τ 2
i sin(Kld)Al(n, t)

−
l=2∑
l=−2

∂η
(l)
2 (m, τ)

∂τ
Al(n, t)−

l=3∑
l=−3

i�lη(l)3 (m, τ)A
l(n, t)
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−
l=3∑
l=−3

ψ
(l)
3 (m, τ)A

l(n, t)−
l=1∑
l=−1

η
(l)
1 (m, τ)A

l(n, t)×
l=2∑
l=−2

ψ
(l)
2 (m, τ)A

l(n, t)

−
l=2∑
l=−2

η
(l)
2 (m, τ)A

l(n, t)×
l=1∑
l=−1

ψ
(l)
1 (m, τ)A

l(n, t) = 0. (6.40)

The order(3, 0) determinesη(0)2 ,ψ(0)
3 andφ(0)3 via an inhomogeneous system of equations.

They read

η
(0)
2 (m, τ) = −d cos(Kd)

d + c
|η(m, τ)|2 (6.41)

ψ
(0)
3 (m, τ) = −

(
d2

c

)
cos(Kd)

d + c
|η(m, τ)|2 (6.42)

φ
(0)
3 (m, τ) = 0. (6.43)

The next order(3, 1) allows us to find the nonlinear evolution ofη. It is an inhomogeneous
linear system of equations forη(1)3 ,ψ(1)

3 andφ(1)3 of determinant zero. Therefore, we will have
a solution if the Fredholm solvability condition holds. This condition gives the nonlinear
evolution ofη in which the term ing(m, τ) coming fromη(1)2 , ψ(1)

2 andφ(1)2 cancels out. The
equation forη(m, τ) = ηm reads finally

−iβ(ηm+1− ηm−1) + α
∂2ηm

∂2τ
− γ |ηm|2ηm = 0 (6.44)

with the following definitions (we setKd = K for simplicity)

β = 1

2

cos3K sinK

1 + sin2K

α = −1

2

(cos2K − 1)(cos2K + 6)(cos2K − 2)2

cos4K

γ = −1

2

cos2K − 2

cos2K − 4

8 cos6K + 6 cos5K − 20 cos4K − 11 cos3K + 13 cos2K − 4

4 cos3K + 3 cos2K − cosK + 1
.

Note that in the Brillouin zoneK ∈ [−π,+π ], the coefficientα has a singularity inK = ±π/2
where the group velocity vanishes, which is a forbidden region.

7. Three-wave resonant interaction

To further illustrate the method, we consider here the Takeno discrete model for the interaction
of excitons (or vibrons) with the phonons in a lattice of coupled harmonic oscillators (via a
Frölich-like Hamiltonian) [17]. The model results from the Hamiltonian

H = Hph +Hex +Hint (7.1)

Hph = 1

2

∑
n

Mu̇2
n + S[un+1− un]2

Hex = 1

2

∑
n

m[q̇2
n + ω2

0q
2
n ] + s[qn+1− qn]2

Hint = 1

2

∑
n

A[un+1− un−1]q2
n. (7.2)

After the rescaling

qn = 1

A

√
2mMq ′n un = m

A
u′n (7.3)
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and forgetting the primes, the equations of motion are

ün −�2
1[un+1− 2un + un−1] = q2

n+1− q2
n−1

q̈n − ω2
1[qn+1− 2qn + qn−1] + ω2

0qn = −qn[un+1− un−1] (7.4)

with the following definitions:

�2
1 =

S

M
ω2

1 =
s

m
.

7.1. Resonant wave interaction

We consider now the situation of three-wave scattering, that is the situation where the exciton
wave contains two components (frequenciesν1 andν2) which interact with the phonon wave
(frequency�) according to the Brillouin selection rule

ν1− ν2 = � k1− k2 = K. (7.5)

For slowly varying envelopes we set

qn(t) = ε[a(1)1 eiθ1 + a(1)2 eiθ2] + ε2[a(2)1 e2iθ1 + a(2)2 e2iθ2 + a(2)3 e2iφ + a(2)4 ei(θ1+θ2)

+a(2)5 ei(θ1+φ) + a(2)6 ei(θ2−φ)] + CC +O(ε3) (7.6)

un(t) = εb(1)1 eiφ + ε2[b(2)1 e2iθ1 + b(2)2 e2iθ2 + b(2)3 e2iφ + b(2)4 ei(θ1+θ2) + b(2)5 ei(θ1+φ)

+b(2)6 ei(θ2−φ)] + CC +O(ε3) (7.7)

where the amplitudesa(j)i andb(j)i depend on the slow variables (m, τ ) and with the definitions

τ = εt
{
ξn = εn ε = 1

N

}
→ m

θ1 = k1n− ν1t θ2 = k2n− ν2t φ = Kn−�t
θ1− θ2 = φ. (7.8)

The choice of the above harmonics in the orderε2 results from the remark that quadratic
terms (likeqnun) for three waves induce (with the complex conjugates) waves with phases 2θ1,
2θ2, 2φ, θ1 + θ2, θ1 + φ, θ2 + φ, θ1 − θ2, θ1 − φ, θ2 − φ. However, the selection rules give
θ2 + φ = θ1, θ1 − θ2 = φ, θ1 − φ = θ2, which are already considered at first order and hence
need not to be included in the second order.

The above change of variables has to be applied to functions

ϕn(t) = ψm(τ) ei(kn−ωt)

for which, now using the tools developed in section 3 forN = ε−1, we readily obtain at order
ε

ϕ̈n = [−ω2ψm − ε2iω∂τψm + · · ·] ei(kn−ωt)

ϕn+1− ϕn−1 = [2i sinkψm + ε cosk(ψm+1− ψm−1) + · · ·] ei(kn−ωt)

ϕn+1− 2ϕn + ϕn−1 = [2(cosk − 1)ψm + iε sink(ψm+1− ψm−1) + · · ·] ei(kn−ωt).

7.2. The limit equation

All the above machinery is applied now to the system (7.4) which gives at orderε

eiφ : [−�2 −�2
12(cosK − 1)]b(1)1 = 0

eiθ1 : [−ν2
1 − ω2

12(cosk1− 1) + ω2
0]a(1)1 = 0

eiθ2 : [−ν2
2 − ω2

12(cosk2 − 1) + ω2
0]a(1)2 = 0.
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These imply the dispersion relations

�2 = 2�2
1(1− cosK)

ν2
1 = ω2

0 + 2ω2
1(1− cosk1) ν2

2 = ω2
0 + ω2

1(1− cosk2) (7.9)

and hence the three group velocities

v = �2
1

�
sinK v1 = ω2

1

ν1
sink1 v2 = ω2

1

ν2
sink2. (7.10)

The next order,ε2, gives in turn

eiφ : −2i�ḃ(1)1 −�2
1i sinK[b(1)1,m+1− b(1)1,m−1] = 4i sinK a(1)1 ā

(1)
2

eiθ1 : −2iν1ȧ
(1)
1 − ω2

1i sink1[a(1)1,m+1− a(1)1,m−1] = −2i sinK a(1)2 b
(1)
1

eiθ2 : −2iν2ȧ
(1)
2 − ω2

1i sink2[a(1)2,m+1− a(1)2,m−1] = 2i sinK a(1)1 b̄
(1)
1

e2iθ1 : [−4ν2
1 − 2�2

1(cos 2k1− 1)]b(2)1 = 4i sink1 cosk1 [a(1)1 ]2

: [−4ν2
1 − 2ω2

1(cos 2k1− 1) + ω2
0]a(2)1 = 0

e2iθ2 : [−4ν2
2 − 2�2

1(cos 2k2 − 1)]b(2)2 = 4i sink2 cosk2[a(2)1 ]2

: [−4ν2
2 − 2ω2

1(cos 2k2 − 1) + ω2
0]a(2)2 = 0

e2iφ : [−4�2 − 2�2
1(cos 2K − 1)]b(2)3 = 0

: [−4�2 − 2ω2
1(cos 2K − 1) + ω2

0]a(2)3 = 0

ei(θ1+θ2) : [−4(ν1 + ν2)
2 − 2�2

1(cos(k1 + k2)− 1)]b(2)4 = 4i sin(k1 + k2)a
(1)
1 a

(1)
2

: [−4(ν1 + ν2)
2 − 2ω2

1(cos(k1 + k2)− 1) + ω2
0]a(2)4 = 0

ei(θ1+φ) : [−4(ν1 + φ)2 − 2�2
1(cos(k1 +K)− 1)]b(2)5 = 0

: [−4(ν1 + φ)2 − 2ω2
1(cos(k1 +K)− 1) + ω2

0]a(2)5 = −2i sinKa(1)1 b
(1)
1

ei(θ2−φ) : [−4(ν2 − φ)2 − 2�2
1(cos(k2 −K)− 1)]b(2)6 = 0

: [−4(ν2 − φ)2 − 2ω2
1(cos(k2 −K)− 1) + ω2

0]a(2)6 = 2i sinKa(1)2 b̄
(1)
1 .

The first three equations above provide the evolutions of the envelopes which we scale as

X = sinKb(1)1 a1 = sinKa(1)1 a2 = sinKa(1)2

and consequently which obey

Ẋ + v
1

2
[Xm+1−Xm−1] = − 2

�
a1ā2

ȧ1 + v1
1

2
[a1,m+1− a1,m−1] = 1

ν1
a2X

ȧ2 + v2
1

2
[a2,m+1− a2,m−1] = − 1

ν2
a1X̄. (7.11)

The remaining 12 equations give simply the coefficients of the second harmonics in terms
of those of the first, precisely:

a
(2)
1 = a(2)2 = b(2)3 = a(2)3 = a(2)4 = b(2)5 = b(2)6 = 0

b
(2)
1 = i

ν2
1 + 1

2�
2
1(cos 2k1− 1)]

sink1 cosk1
[a(1)1 ]2

b
(2)
2 = i

ν2
2 − 1

2�
2
1(cos 2k2 − 1)

sink2 cosk2
[a(2)1 ]2
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b
(2)
4 = i

(ν1 + ν2)
2 + 1

2�
2
1(cos(k1 + k2)− 1)

sin(k1 + k2)
a
(1)
1 a

(1)
2

a
(2)
5 = −i

2(ν1 + φ)2 + ω2
1(cos(k1 +K)− 1) + ω2

0

sinK
a
(1)
1 b

(1)
1

a
(2)
6 = i

2(ν2 − φ)2 + ω2
1(cos(k2 −K)− 1) + ω2

0

sinK
a
(1)
2 b̄

(1)
1 .

Hence, equation (7.11) constitute a closed system of equations for the first-order variations of
the envelopes. It is the discrete analogue of the continuous three-wave resonant interaction
system.
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Appendix. Discrete change of variable

For a given functionx of the discrete variablen, we are interested in expressing all-order
differences in alarge grid indexed by the variablem (taking points separated by a given odd
integerp) in terms of the original hierarchy of differences (3.6). The following notation will
be used throughout:

∇`xn =
∑̀
k=0

(−)kCk` xn+`−2k = x(`)n (A.1)

1`
pxn =

∑̀
k=0

(−)kCk` xn+p(`−2k) = x(`)m . (A.2)

To express the1-differences in terms of the∇-differences, we first writeexactTaylor-like
series as the followingidentities(valid for any givenn and any point functionxn)

xn+p =
p∑
j=0

ajpx
(j)
n +

1

2
x̃(p)n xn−p =

p∑
j=0

(−)j ajpx(j)n + (−)p+1 1

2
x̃(p)n (A.3)

with the following definitions for thetilde-derivatives

x̃(p)n = xn+p +
p∑
`=1

(−)`C`p+1xn+p+1−2` + (−)p+1xn−p. (A.4)

For instance, we may write

xn+5 = xn + 5
2x

(1)
n + 9

2x
(2)
n + 5

2x
(3)
n + 6

2x
(4)
n + 1

2x
(5)
n + 1

2 x̃
(5)
n

xn+4 = xn + 5
2x

(1)
n + 4

2x
(2)
n + 5

2x
(3)
n + 1

2x
(4)
n + 1

2 x̃
(4)
n

xn+3 = xn + 3
2x

(1)
n + 4

2x
(2)
n + 1

2x
(3)
n + 1

2 x̃
(3)
n

xn+2 = xn + 3
2x

(1)
n + 1

2x
(2)
n + 1

2 x̃
(2)
n

xn+1 = xn + 1
2x

(1)
n + 1

2 x̃
(1)
n

xn−1 = xn − 1
2x

(1)
n + 1

2 x̃
(1)
n

xn−2 = xn − 3
2x

(1)
n + 1

2x
(2)
n − 1

2 x̃
(2)
n

xn−3 = xn − 3
2x

(1)
n + 4

2x
(2)
n − 1

2x
(3)
n + 1

2 x̃
(3)
n
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xn−4 = xn − 5
2x

(1)
n + 4

2x
(2)
n − 5

2x
(3)
n + 1

2x
(4)
n − 1

2 x̃
(4)
n

xn−5 = xn − 5
2x

(1)
n + 9

2x
(2)
n − 5

2x
(3)
n + 6

2x
(4)
n − 1

2x
(5)
n + 1

2 x̃
(5)
n

which are useful to play with in order to understand in a concrete way the relations that follow.
Theajp are the coefficients to be computed but only some of them are needed, as indeed

we considerdifferences1k
pxn. For the definitions

α`q = 2a2`+1
2q+1 β`r = 2a2`

2r (A.5)

the first and second derivatives read (p = 2q + 1)

xn+p − xn−p =
q∑
`=0

α`q∇2`+1xn (A.6)

xn+2r − 2xn + xn−2r =
r∑
`=1

β`r∇2`xn (A.7)

and we prove hereafter the expressions (3.8) and (3.9) for the coefficientsα`q andβ`r [20]:

α`q =
(2q + 1)(q + `)!

(q − `)!(2` + 1)!
β`r =

2r(r + `− 1)!

(r − `)!(2`)! . (A.8)

Note that in (3.9) we simply have setγ `q = β`r for r = 2q + 1.
As the pointn is fixed (arbitrary), lighter notation can be used, namely

Gq = x(2q+1)
n Aq = xn+(2q+1) − xn−(2q+1)

Hr = x(2r)n S0 = xn Sr = xn+2r + xn−2r (A.9)

and the definition (A.1) can now be written as

Gq =
q∑
k=0

(−)q−kCq−k2q+1Ak Hr =
r∑
k=0

(−)r−kCr−k2r Sk (A.10)

while (A.6) and (A.7) become respectively (note thatβ0
r = 2)

Aq =
q∑
`=0

α`qG` Sr =
r∑
`=0

β`r Hr . (A.11)

Note that neither inAq nor inSr do the tilde-differences (A.4) appear.
The first step is the computation of the coefficientsα`q . By replacing (A.10) in (A.11), we

arrive at the following equivalent relations

Aq =
q∑
`=0

α`q

∑̀
k=0

(−)`−kC`−k2`+1Ak (A.12)

Gq =
q∑
k=0

(−)q−kCq−k2q+1

k∑
`=0

α`kG` (A.13)

which areidentitiesvalid for any functionxn, that is for any choice of the sequences{Ak} and
{G`}. Consequently, the coefficients of eachAk andGk identically vanish, which furnishes
the equivalent recursion relations

∀{`, q}, ` < q,

q∑
k=`
(−)k−`Ck−`2k+1α

k
q = 0 αqq = 1 (A.14)

∀{`, q}, ` < q,

q∑
k=`
(−)q−kCq−k2q+1α

`
k = 0 αqq = 1. (A.15)
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The rest of the proof is the check that the expression ofαkq given in (A.8) does solve the
above recursion relations. This is easily done with help of the following identity

n∑
m=0

(−)m (s + n +m− 1)!

m!(n−m)!(s +m)!
= 0 (A.16)

which can be obtained by differentiatingn times a conveniently chosen polynomial of degree
n− 1 in the variables, namely

Df (s) = f (s + 1)− f (s) Dnf (s) =
n∑

m=0

(−)n−mCmn f (s +m) (A.17)

f (s) = (s + n− 2)!

(s − 1)!
⇒ Dnf (s) = 0. (A.18)

The same procedure is then applied to obtain the coefficientsβkq as given in (A.8).
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